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Abstract—Understanding and organizing data is the first step
toward exploiting sensor phenomenology. What features are
good for distinguishing people and what measurements, or
combination of measurements, can be used to classify people
by demographic characteristics including gender? Dimension
reduction techniques such as Diffusion Maps that intuitively
make sense [1] and Principal Component Analysis (PCA) have
demonstrated the potential to aid in extracting such features. This
paper briefly describes the Diffusion Map technique and PCA.
More importantly, it compares two different classifiers, K-Nearest
Neighbors (KNN) and Adaptive boost (Adaboost), for gender
classification using these two dimension reduction techniques.
The results are compared on the Civilian American and European
Surface Anthropometry Resource Project (CAESAR) database,
provided by the Air Force Research Laboratory (AFRL) Human
Effectiveness Directorate and SAE International. We also com-
pare the results described herein with those of other classification
work performed on the same dataset, for completeness.

I. BACKGROUND

The goal of this effort is to determine the salient features
of the human body indicative of various demographic char-
acteristics and then pair them with the appropriate classifiers
such that those characteristics can be ascertained in a remote-
sensing setting.

In this first, or preliminary work of a series of studies
to be performed, the goal was to find the best combination
of features and classifiers for human gender categorization
using the features of the body as extracted from the CAESAR
database. However, since the collection scheme for that dataset
was highly controlled and the fidelity of the data is greater than
that available via most remote sensing techniques, a reduced
set of features was sought via a dimension reduction technique.

Dimension reduction techniques are utilized in conjunction
with multi-dimensional data and the assumption that the data
can be represented in lower dimensions. Or, rather, that the
data is inherently of low dimension, but is overdetermined
in the dataset. One way this idea is expressed is in the
formalism of Manifold Learning. In that framework, the multi-
dimensional data is assumed to lie on, or near, a manifold em-
bedded in the multi-dimensional space. The multi-dimensional
data is viewed as being sampled from the manifold[2]. The
inherently low dimensionality that is then sought is the true
dimensionality of that manifold. The methods by which the
lower dimension representations of the data are calculated
is where dimension reduction techniques differ. What is the
purpose of reducing the dimensionality of a dataset? As stated

in [3]: efficient processing, visualization, and data collection
reduction. Efficient processing, as described in [4], refers to
combating the ‘curse of dimensionality’. This is a side effect
of classical data processing algorithms whose computational
complexity grows exponentially with the dimension. The
application to visualization can be exemplified thus: when
possible, it is much simpler to visualize the data in lower
dimensions than it is in higher dimensions. Finally, data
collections are expensive, so the goal to collect less data while
maintaining the same level of classification success is another
application of dimension reduction.

In [3] a dimension reduction technique was applied to the
CAESAR database which showed that it is possible to reduce
the original dimensionality to three with reasonably successful
classification accuracy. However, in that work, they only used
one dimension reduction technique and a single classifier:
Diffusion Map and KNN classifier. The literature shows that
Adaboost, as described in [5], and other more sophisticated
classifiers such as support vector machines (SVM), can outper-
form KNN[6]. Furthermore, there are other dimension reduc-
tion techniques that need to be considered. Thus, the goal of
this effort is to expand the experiments in [3]. We will use two
dimension reduction techniques, Diffusion Map and Principal
Component Analysis (PCA), and two classifiers, KNN and
Adaboost, and compare the results. To our knowledge, these
experiments have not yet been performed in the literature.
There is however a rich amount of work in the literature
comparing Adaboost and KNN for gender classification using
images of faces[6]. In that work it was shown that Adaboost
outperformed KNN. There is also some work in the literature
comparing non-linear dimension reduction techniques, such as
Diffusion Map, to linear dimension techniques, such as PCA.
The literature shows that PCA often outperforms nonlinear
dimension reduction techniques, including Diffusion Maps,
when used on real datasets[2].

The remainder of this paper is organized as follows: Section
II covers the different techniques employed and describes
the CAESAR Database, Section III outlines the experimental
design process, Section IV details the results from the exper-
iments performed and Section V contains conclusions drawn
from the work.



Figure 1. Flow chart representing the Diffusion Map algorithm.

II. METHODS

A. Diffusion Maps

The Diffusion Map technique is a non-linear dimension
reduction technique introduced in [7], [8] and is referred
to in this paper as the Diffusion Map. The Diffusion Map
first embeds raw data into a spectral graph framework. The
method for defining the ’nodes’ and ’edges’ that comprise
the graph is application specific. Edges provide a measure of
’similarity’ between nodes. This measure should have these
two properties: symmetry and non-negativity. That is, the
similarity between two nodes should be the same regardless
of which node is used as a reference. The non-negativity is
straightforward. The name ”Diffusion” is a reference to the
process of heat diffusing through a medium[9]. Similar to the
model of heat diffusion, in this algorithm weights are assigned
to the edges of the graph, as related to a reference node, by a
random walk on the graph with a distribution that diminishes
the farther away from the reference node the walk progresses.

With these weights considered as probablities, one can form
a transistion probability matrix, a Markov Matrix, representing
the data as it lies on the manifold. When the assumed existence
of the manifold holds, the eigenvectors of the normalized
Markov matrices embed the graph into a Euclidean space.
The algorithm for the Diffusion Map used in this paper is
succinctly outlined in [10]. The overall notion of the technique
is depicted in Figure 1. We refer the reader to [7] and [8] for
the complete details of the Diffusion Map method.

B. Principal Component Analysis (PCA)

The first of the two classifiers employed in this work is
Principal Component Analysis, a.k.a. Karhunen-Loeve Trans-
form, a.k.a. Singular Value Decomposition[11]. PCA is a
standard tool used in various areas of data analysis including:
dimensionality reduction, data compression, feature extraction,

and data visualization [12]. PCA is a non-parametric, meaning
it can be extended to new input data easily. PCA is also a
linear method and is capable of extracting relevant information
and mapping the data into a lower dimensional Euclidean
space[13] via an orthogonal projection. The algorithm gleaned
from [13] was implemented as follows: The application

Algorithm 1 PCA, as implemented.
Require: A set of d-dimensional vectors

X = [x1, x2, . . . , xn](d×n)
Ensure: The new mapping

F : X̃ → Φ = [φ1, φ2, . . . , φn](m×n) for m < d

1: Subtract the mean:
X̃ = [(x1 − x̄), (x2 − x̄), . . . , (xn − x̄)](d×n)

where x̄ = 1
n

n∑
i=1

xi

2: Compute the covariance matrix: C(d×d) = X̃X̃t

3: Compute the eigen-decomposition of C: Cfi = µifi
where fi’s are the eigenvectors and µi’s are the associated
eigenvalues.

4: Sort fi’s according to descending order of associated µi’s.
5: Choose m < d and define F = [f1, f2, . . . , fm](d×m) so

that Φ(m×n) = F tX̃

involves taking the covariance matrix of the zero-mean data
and performing eigenvalue decomposition with the eigenvec-
tors sorted according to decreasing order of the associated
eigenvalues[14]. Referencing Algorithm 1, the choice of m,
the number of eigenvectors used as a basis for the new lower-
dimensional space, is dependent on the inherent dimensionality
of the data, i.e. the intrinsic dimensionality of the manifold
described above. The larger eigenvalues correspond to eigen-
vectors such that more of the information/variability in the
data is accounted for when mapped to those eigenvectors. The
idea is that choosing m << d while keeping m large enough
to account for most of the information in the data will render
a mapping F to a lower-dimensional Euclidean representation
of the data.

It is good to note some of the peculiarites of PCA. The
application of PCA implies an assumption of a linear nature
to the data. This is necessary because of the linear nature of
the mapping produced. Also, since PCA describes the data in
terms of the zero mean and the covariance matrix, it is formu-
lated best for Gaussian distributions in the data and is, in fact,
optimal in that case; Gaussian distributions being completely
defined by their mean and covariance[15]. Furthermore, since
PCA maps the data onto orthogonal bases that preserve the
most variance, it is assumed that the directions with the most
variation in the data are the most important and that they are
orthogonal[16].

C. K-Nearest Neighbors (KNN)
The KNN classifier implemented in this research is based on

the standard algorithm found in the literature[17]. In this im-
plementation the basic idea involves comparing the Euclidean



distance of the test feature vector against all feature vectors in
the training set. The first k elements with the shortest distances
to the test vector are then used to determine its classification
by majority vote. When k is even, ties are handled by using
the weighted distances associated with each voting element.
Obviously, small choices for k would result in great sensitivity
to outliers and overfittng. Choosing a sufficiently large k
aids in preventing such bias. The advantages of KNN are
its simplicity, and hence tractability, and its use of local
information to allow for high adaptability to the data. Also,
several bias methods for KNN have been developed to improve
its accuracy[18].

D. Adaptive Boosting (Adaboost)

Adaboost has been shown to minimize the exponential
loss function over a set of functions and has relationships to
maximize margins similar to support vector machines[5]. The
concept of Adaboost is to take a series of weak classifiers
and combine them linearly to generate a strong classifier. A
classifier is considered a weak classifier if it is better than
random guessing and involves minimizing a weighted error,
so that the error rate is less than one-half. The Adaboost
algorithm initially assigns weights of a uniform distribution
for all samples in the dataset. After weights are set, a classifier,
h, is selected from a set of all classifiers, H, that minimizes
the weighted error for the current round, or iteration, t. The
remaining steps involved for the current round are calculating
the classifier weight, using Equation 1 and updating the
individual sample weights as found in Equation 2. In order
to make the weights a distribution they are unit normalized
by dividing by Z [5]. The sample weight updates compare
the current class label, y, with the output from the current
classifier, h. If the classification is correct then the weight
decreases, otherwise the weights increase for misclassification,
thus providing focus on misclassifications for the next round.
The final step involves looking at the sign of the sum of linear
classifiers for each round, as found in Equation 3, to provide
the classification result ŷ. The weak classifier chosen in this
paper used a single node decision tree (decision stump) across
all dimensions.

αt =
1

2
log

(
1− εt
εt

)
(1)

Wt+1 =
Wte

−αtyht(x)

Zt
(2)

ŷ = sign

(
T∑
t=1

αtht(x)

)
(3)

E. CAESAR Database

In this paper we specifically analyze the CAESAR database.
This database is provided by the Air Force Research Lab-
oratory (AFRL) Human Effectiveness Directorate and SAE
International. It is available for purchase from SAE Interna-
tional at http://store.sae.org/caesar/. The dataset includes 4400
human subjects from North American and European countries.
This database is unique because it not only contains traditional

Figure 2. Examples of the three 3D poses included with the CAESAR
database entitled: (from left to right) Standing, Seated Coverage, and Seated
Comfortably

anthropometric measurements gathered by hand using tape
measures and calipers, of which there are 40, but it is also the
first database to contain 3D LiDAR scans with three different
poses per subject. An OpenGL viewer was created to view
the LiDAR scan models in the native .ply format. Results
of the data using this viewer are shown in Figure 2 from
[3]. Included in the dataset are demographic data for each
individual including characteristics such as gender, ethnicity,
and age, detailed reports describing the collection and pre-
processing of the data, and source code for some functions to
manipulate the data. To aid in the testing/mining process, land-
marks were placed on the individuals, prior to collecting the
LiDAR data, on locations where the anthropometric measures
were observed. Thus, extraction of the same measurements,
as the anthropometric measures, from the 3D data is possible,
allowing comparison of more advanced processing techniques.

III. EXPERIMENT DESIGN

A. Data

To reduce discrepancies between the North American and
European databases as described in [19], only the North
American database was used in our work and, as described
in [3], a total of 22 subjects were removed due to missing
data. The resulting database was comprised of 2369 subjects
with 1250 females (52.76% of the database) and 1119 males
(47.24% of the database). Each subject had 43 traditional
measurements, so the original dimensionality of the dataset
is 43. Weight was not included in the measurements based on
the assumption that it is highly correlated to height. Hence,
weight naturally falls out of the Diffusion Maps, as explained
later.

B. Pre-Processing

Since there is great disparity in the measurements of dif-
ferent features, for example ’hand length’ varies from 6.26 in.
to 9.06 in. and ’stature’ that varies from 49.13 in. to 82.05
in., the measurements were normalized before running the
experiments. Each of the 43 measurements were normalized



across all individuals using the standard linear normalization,

M̂ =
M −ML

MH −ML
(4)

where M is the original measurement in the database, ML

is the minimum value of the given measurement in the
database, and similarly MH is the maximum value of the given
measurement in the database.

C. Diffusion Map

We implemented the Diffusion Map technique using the
algorithm detailed in [10] and using the set-up described in [3].
We chose the weights w(i,j,), using a Gaussian distribution,
described in Equation 5 below, where the indicated norm is
the Euclidean, L2, distance as also chosen in [8] and [10].

e
−‖xi−xj‖

2

ε (5)

As described in [3], this is a natural choice when the data
points are human subjects. By appropriately normalizing these
edge weights, the transition probabilities for a random walk on
the graph were determined. These transition probabilities were
then formulated as a Markov matrix. Thus, by determining the
eigenvalues and eigenvectors of this matrix one can embed the
graph into Euclidean space using the Diffusion Map given by
Equation 6 to achieve dimension reduction.

Ψt : x 7→ (λt2ψ2(x), λt3ψ3(x), . . . , λtmψm(x))T (6)

Here m(t) is the number of terms retained to define the
diffusion map and embed the data into the Euclidean space
Rm(t), λi are the eigenvalues, ψi are the eigenvectors, and t is
the exponential of the resulting eigenvalues. The difficult part
of using the Diffusion Map technique is finding the appropriate
value for ε, the diffusion-distance tuning parameter and t, the
exponent of the eigenvalues. As ε increases, the edge weight
increases, and as t increases, the spectrum decays at a greater
rate[10].

D. Experiment 1: Tuning the Diffusion Map

In Experiment 1, the goal is to find the optimal parameters
for the Diffusion Map, namely ε, t, and m, for use with Ad-
aboost and KNN. A genetic algorithm (GA) was implemented
to calculate these parameters using the correct classification
rate of each classifier as the fitness functions. The diffusion
coordinates from the Diffusion Map were used as input for the
classifiers and the algorithm iterated between the classifier and
the number of dimensions. The number of dimensions at which
the classifier is saturated indicates the true dimensionality of
the data, i.e. the reduced dimensionality of the database. As
noted in [20], it is a difficult to determine how much data
to use for training, validation, and testing when building a
classifier. A common starting point is to use 50% for training,
25% for validation and 25% for testing. The implementation
of the fitness function took advantage of the Leave-one-out
(LOO) method, as described in [17]. The LOO method is used
when data for training and testing is limited. Each data point
is left out, then the classifier is trained using all the remaining

data points. The disadvantage of this technique is that by
its very nature the training set cannot be a stratified set[17].
However, in practice it has proven successful and is widely
used throughout the literature[21]. PCA was not evaluated in
Experiment 1 because it is non-parametric, so it didn’t require
tuning of its parameters.

E. Experiment 2: Comparison of Diffusion Maps and PCA

In Experiment 2, the goal was to test the robustness to
overfitting for the two gender classifiers using Diffusion Maps
and PCA. The initial assumption is to show that Adaboost
generalizes better than KNN. The comparison between dimen-
sionality reduction techniques is to show that Diffusion Maps
will perform comparably or better than PCA, contrary to [2].
The first part of the experiment consisted of taking the optimal
output parameters from Experiment 1 for the Diffusion Maps
and running them to generate the lower dimension data, in
the first five dimensions. The result was five new datasets,
each of increasing dimensionality from one to five. With all
of the samples mapped to lower dimensions, the classification
tests began. Again, LOO was utilized and the Adaboost and
KNN algorithms were applied. After evaluating the classifiers’
performance on each of the Diffusion Mapped data sets, the
same steps were used to evaluate PCA.

IV. RESULTS AND EVALUATION

A. Experiment 1: Tuning the Diffusion Map

The optimal tuning parameters were found for Adaboost and
KNN over the first five dimensions. The best fitness scores are
shown in Table I. Adaboost outperformed KNN for the first
dimension while KNN outperformed Adaboost for all other di-
mensions. However, the differences in the scores are marginal.
Also, it appears that the true dimensionality of the data is three
as was also shown in [3]. Table II shows the specific settings
that achieve the best fitness score. These were calculated by
averaging the settings that produced the best fitness scores.
In other words, multiple settings produced the same scores
so to reconcile this, the average was calculated. An anomaly
occurred in optimizing for the number of rounds for Adaboost
in dimension two: the results indicate that Adaboost only
required three weak classifier iterations to achieve the best
score. Having the data well separated would account for the
low number and also indicates that there is a low sensitivity to
change in iteration count when using Diffusion Map. Empirical
observation of the peak fitness score in the GA showed that
Adaboost often initialized with higher classification rates than
KNN and converged more quickly. Figure 3 shows a histogram
of the scores for all fitness evaluations run over the duration
of the GA. Adaboost tended to have a wider distribution at its
peaks with fewer scores below 0.85. KNN, on the other hand,
had a greater number of low classification rates but ultimately
resulted in a higher classification rate after the optimization
was complete, which is also reflected in Table I. In other
words, Adaboost was more consistent while KNN was able
to achieve the better classification rate.



Table I
BEST FITNESS SCORE FROM GA FOR DIMENSIONS 1 THRU 5.

Dimension 1 2 3 4 5
Adaboost 0.960 0.963 0.980 0.983 0.983

KNN 0.940 0.970 0.987 0.987 0.987

Table II
OPTIMAL SETTINGS FROM GA OPTIMIZATION.

KNN AdaBoost
Dimension k ε t round ε t

1 1 0.178233 3.732595 30 0.17952 6.577063
2 1 0.450246 0.565029 3 0.113352 4.145194
3 1 11.1335 1.694082 32 15.81824 5.863686
4 1 11.25454 1.666082 23 4.010673 4.010673
5 1 2.611378 1.669408 23 0.13262 14.79483

B. Experiment 2: Comparison of Diffusion Maps and PCA

The results of the classification rate for the different dimen-
sion data sets, as produced by the Diffusion Map and PCA
techniques, are detailed in Figure 4. It was observed that for
representations of lower dimensionality, the data produced via
Diffusion Maps allowed for more accurate classification than
that produced by PCA. However, as the classifiers saturated,
i.e. as the intrinsic dimensionality of the data was achieved,
the difference between the separability of the two different
reduced dimension sets became unnoticeable. Ultimately, the
standard pairing of PCA and KNN proved to be the most
accurate for this data set and classification, but the accuracy
by both AdaBoost and KNN on the Diffusion Map data
proved more consistent. However, it should be noted that the
difference in the final classification results spanned a range of
only 4%. Particularly, after dimension three the difference in
the classifier choice becomes the main factor in classification

Figure 3. Fitness score distribution from the GA for dimensions 1-5(top-
down)

Figure 4. Classification accuracies for the classifiers on the different reduced
dimension sets.

Table III
WEIGHT BIN COLOR MAP

Color Weight (lbs) Subjects
Red <100 0-18
Magenta 100-125 19-297
Yellow 125-150 298-867
Green 150-175 868-1459
Cyan 175-200 1460-1873
Blue 200-225 1874-2131
Black >225 2132-2369

accuracy, and not the dimension reduction technique. That is,
the two dimension reduction techniques are comparable for
reduced dimension sets of dimension three or greater. This
seems to indicate that the data has an intrinsic linearity with
respect to gender stratification. Indeed this can be observed
from the seemingly linearly separable clusters of gender in
Figure 5.

V. CONCLUSION

A. Interpretations

To help interpret the results, we analyzed the resulting
Diffusion Map and PCA reduced data sets for dimensionality:
three. As noted before, the subjects’ weight was separated
from the original dataset fed into the Diffusion Map. Instead,
we show that weight naturally falls out due to the inherent
correlation of the data. As in [3], we divided the data into
different weight bins and plotted the Diffusion Map according
to weight. The weight bin color map is explained in Table
III and the resulting Diffusion Map is shown in Figure 5.
We used the optimal parameters for dimension three, found
in Experiment 1, to construct the Diffusion Maps. As shown,
the resulting Diffusion Maps are nicely organized according
to weight which also confirms the correlation between weight
and gender. We also plotted the same manifolds according
to gender, as shown in Figure 5, and the seemingly linear
separability between classes can be seen, which accounts for
the high classification rates. It is also most likely due to this
linear separability, as well as the Gaussian nature of the data,
that the PCA/KNN pair produced the highest classification
results. Since PCA is a linear mapping, an inverse mapping



Figure 5. Some example stratifications of the Diffusion Map reduced dimension data sets color-coded according to weight (see Table III) and gender (red
and blue for female and male, respectively): (a)&(b) KNN, (c)&(d) AdaBoost

Table IV
INVERSE PCA MAPPING

Dimension 1 Dimension 2 Dimension 3
Hand Circ. Subscapular Skinfold Bizygomatic Breadth
Armscye Circ. Triceps Skinfold Crotch Height
Hip Circ. Max. Height Triceps Skinfold
Chest Girth at Scye
Neck Base Circ.
Arm Length
Shoulder Breadth
Spine-Elbow
Knee Height
Vertical Trunk Circ.

is fairly straightforward to construct. However, since the result-
ing bases are defined as linear combinations of the features of
the data, the inverse mapping will not link one basis element to
a single feature, but to a collection of features. The coefficients
of the basis vectors were analyzed for statistical significance
and the resulting ”important” human features, corresponding
to each of the first three reduced dimensions, are shown in
Table IV. Clearly, the measurements that are ”important,” as
gleaned from PCA, are such that it is no simple task to measure
them in a remote-sensing setting. However, the first dimension
seems to be aggregating overall size-related, or coarse features
and the other two dimensions seem to focus on more fine
attributes. This matches our intuition that, in general, the size

of an individual is a good indication of gender. However, this
also indicates that scale is very much a factor in this analysis
and must be considered in future work.

B. Summary
In this work, we gave an introduction to dimension reduc-

tion techniques, specifically the Diffusion Map technique and
PCA. We applied these schemes to a subset of the CAESAR
database namely the North American database. The difficult
part of implementing the Diffusion Map technique was finding
appropriate values for the two Diffusion Map parameters, ε,
the scale factor, and t, the exponent on the eigenvalues. In
Experiment 1 we decided to use a GA to search for the optimal
parameters by using KNN and Adaboost. In Experiment 2,
we then did a traditional train and test procedure using the
two classifiers. Based on our experiments, PCA performed
comparable to Diffusion Maps, begging the question if the
CAESAR data is in fact linear. Also based on our experiments,
the true dimensionality of the data strongly appears to be
just three. Our results are consistent with previous work done
in [19] where high correct gender classification rates were
achieved with seven or fewer measurements. The resulting
manifolds for Diffusion Maps show a clear separation of the
genders and of the different weight groups. Also, the inverse
mapping from PCA seems to indicate that size plays a major
role in gender classification, as performed in this work.



C. Future Work

Although there does appear to be evidence that the dimen-
sionality of the CAESAR database can be reduced to three
dimensions, we are currently working on a strategy to find
what those dimensions are using the Diffusion Map. This will
be a topic of our future work. We will also keep comparing
the Diffusion Map technique to other dimension reduction
techniques with different classifiers. Furthermore, we will also
explore the Out-of-Sample Extension described in [8] in order
to divide the data into train, validate, and test subset before
we employ the Diffusion Map. Furthermore, some of the
measurements are highly correlated so exploring decorrelation,
i.e.’whitening’ techniques, and other normalization techniques,
might help improve performance of the Diffusion Map method.
Ultimately, we will transition to the 3D LiDAR data for a more
application motivated research effort.
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